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Functional Analysis

Young’s ineq.: Given p,q > 1 such that % + % =1 then
Va,b € C,[ab| < L 4 L

Holder’s ineq.: Given p,q > 1 such that % + % =1 then
vX7 y e (Cn) Zz;l
Integral version:

[ @@ do < (S 1@ da)” (el dr)*

Minkowski’s ineq.: Given p > 1 then
v,y € C Ix +yllp < [Ix[lp + lIyll»
(also works for ¢? and L? spaces)

|ziyi| < [|x]|pll¥]lq (holds when n = co too)

Zorn’s lemma: Suppose a partially ordered set P has the
property that every chain in P has an upper bound in P.
Then the set P contains at least one maximal element.

Vector Spaces

TODO: vect. space axioms

,Zn (fin.) are lin. indep.:
+ant, =0 = a1 =

Tlyeo-

o1z + - c=oa, =0
Y spans V: Yo € V, v is (fin.) lin. combin. of vectors in V

M C X is basis for X: any fin. set of vectors in M are
lin. indep., and M spans X

Equiv. basis: X is a basis of V
<= Y is a maximal lin. indep. subset of V'
<= Y is a minimal spanning subset of V'

Existence of basis: every vector space has a basis
- Proof using Zorn’s lemma: ¥ := {B C V | B is lin. indep.}

Cardinality of basis: all bases of V' have same cardinality

X is finite-dimensional: bases of X has finite cardinality

Metric Spaces

Def: set X with distance d satisfying:
- d is real-valued, finite, and non-negative
-d(z,y) =0 <= =y

- d(z,y) = d(y,z) (symmetry)
-d(z,y) <d(z,2) +d(z,y) (A ineq.)

Equiv. continuity: T : X — Y is cts.
<= Vopenset S CY, T 1(S) is open subset of X

Convergent =—> Cauchy
In complete metric spaces: Convergent <= Cauchy

Isometry: distance-preserving transformation
Complete: Every Cauchy sequence converges
Every Cauchy sequence is bounded

Continuous <= every open set has an open pre-image
<= every closed set has a closed pre-image

f:X —Y is a homeomorphism: f bijective; f & f~!

Normed Spaces

Def: set X with norm || - || satisfying:

el >0
-zl=0 <= =0
- [Jez]| = |a[[z]| (scaling)

-l +yll < llzll + [lyl| (A ineq.)

Normed space gives rise to a metric d(z,y) == ||z — y/|

Normed space: vector space with norm (normed space is
cts. in both arguments for both VA and SM)

Banach space: normed spaces whose metric is complete

= {aeR" [ Y2 |a;" < oo}
o0 = {a € RN | supj2 [a;| < oo}

Sequence spaces:

are Banach spaces

Thm: subspace Y of Banach space X is complete
<= Y is closed wrt X

Isometry: distance-preserving transformation

Completion thm: Given normed space X, there is a
Banach space X and an isometry A from X onto a
subspace W of X which is dense in X. The space X is
unique up to isometry.

(Metric completion applies for general metric spaces too)

||| and || - || are equivalent:
Ja, b > 0 such that Yo € V,aljv]| < |jv]|" < b||v||

Finite-dim vector spaces: On any finite-dim V' (over R
or C):

- Any two norms are equivalent

- B(1) is compact

- V is complete (hence Banach)

- Any subspace W C V is complete (hence closed in V)

1

= (S 1/ (@) dz)”

Function spaces: [|f]|,

Facts:

- p=o0: (C[0,1], ]| ,) Banach

-p < oo: (C[0,1],[|-]|,) not complete

- (LP[0, 1], [|-]I,,)) = (V/Vo, |I[l,,) is a (dense) completion of
(€10, 1], [I-11,,) where

1
Vo= {f [0,1] = R | f measurable, [} | f(x |pd:17<oo} and
Vo = {f ev| fo |f(x |pdm:0} (in other words, L?[0,1]

is like V', but where functions that agree almost everywhere
are identified)

Linear Operators

Def: T: V — W where V, W are vector spaces over F' and
T(x+y) =Tz + Ty [VA] and T(azx) = oIz [SM]

E.g. Integration as lin. op.: T : L'([a,b]) — L'([a,b])

where (T'z)(t) = f; x(7)dr is a lin. op.

Subspaces: lin. op. T: X = Y:
T(X) is a subspace of Y; Ker(T') is a subspace of X

Inverse: lin. op. T: X = Y:
- T is injective <= (Tx =0 = 2 =0)
- if T~ exists, then it is a lin. op. T7!:Y = X

lin. op. T: X — Y is bounded:
Je > 0 such that Vo € X, ||Tz| < ¢||z]|

_— IT=]| _
HTH = SUPzeXx =l = SUp zex ||TZZ?H
xﬁ Il e ”HT I Tz
z = =
= SUup zeXx - — Sup zeXx —— = SuD gex - (VC > 0)
lzl=c =] <c lz]<e

Equiv boundedness & continuity: lin. op. 7: X — Y.
T is uniform cts.

<= T is cts.

Tiscts. at0eV

T is cts. at some x € V

T is bounded

Cor.: If lin. op. T: X — Y is bounded then:
-xy > = T(x,) = T(x)
- Ker(T) is closed (pre-image of closed set on cts. func.)

—
—
—

Finite: Any lin. op. T: V — W where V finite-dim is cts

Thm norm space: X, Y are normed spaces over the same
field:

- B(X,Y) is a subspace of L(X,Y), and it is a normed
space with norm ||T||

(B(X,Y) : bounded lin. ops.; L(X,Y) : set of lin. ops)

Quotient sp. & projection: If U closed subspace of V:
- V/U inherits norm and projection map is cts
- V Banach = V/U Banach

Continuous decomposition into projection and
isomorphism (tutorial): If T : V — W cts:
T:V/Ker(T) = W (st. T =T o P, P projection map)

Lin. op. is Banach: If Y is Banach and X is a normed
space (not necessarily Banach), then B(X,Y) is Banach

(Continuous) dual space of V: V* := B(X,R)
Algebraic dual space of V: Hom(X,R) (set of
structure-preserving maps from X to R)

Thm dual: The dual space of a normed space is Banach

Invertibility: T € B(V,W) is invertible := 35 € B(V, W)
such that T'S = Idy and ST = Idy

Automorphism:
Aut(V) :={T € B(V,V) | T is invertible}
(implies that 77— € B(V, V) and hence is bounded too)

Aut(V) is an open subset of B(V)

Homeomorphism: continuous function that has a
continuous inverse function

Homomorphism: structure preserving map

Uncountable (algebraic) basis: If (V,|-]|) is infinite-dim
Banach space, then dim V' (i.e. cardinality of any basis) is
uncountable (using the normal (finite/algebraic/Hamel)
basis)

V' is separable: V has a countable dense subset

S is a topological spanning set: (algebraic) span of S is
dense in V'

(e;)ien € V is a Schauder basis:
every v € V can be expressed as v = 221 a;e;, and
Z?il a;€; = Zzoil biei == Vi € N, a; = bi

V has a Schauder basis
= V has a countable topological spanning set
—> V is separable

|Stone-Weierstrass Theorem |

Continuous functions on compact space is Banach:
If X a compact metric space then (C(X,R), ||-]|,) is a
Banach space (where C'(X,R) is the set of continuous
functions from X to R)

X is an R-Algebra: X is a R-vector space and a ring,
where the ring addition is equivalent to the vector addition

Y C X is a subalgebra: vector subspace that is closed
under ring multiplication (so Y is also an algebra)

Statement: Let X be a compact metric space.
If A C C(X,R) with:
-1 € A (1 is the unit of the ring C(X,R))
- A is a subalgebra
- A separates points of X
(i.e. Vo1 # 29 € X,3f € A such that f(z1) # f(x2))
Then A is dense in C'(X,R) (using [|-|| )
(For C (instead of R), also require that f € A = f € A)

Separability of bdd cts functions: (C[0,1], || .) is
separable (can be proved with SW by letting A be the set
of all polynomials with R coef., and then observing that the
set of all polynomials with @ coef. is dense in A)

Eigenvalues & Eigenvectors

Def: Given T:V — V and v € V' \ {0} and A € F, then:
v is an eigenvector of 7', and A is an eigenvalue of T’

Finite: If T is finite, then:
A is an eigenvalue <= T — X is not injective <=
T — X is not invertible <= det(T'—\) =0

Point spectrum of T: {A € C| A is an eigenvalue of T'}
Spectrum of T: ¢(T) = {A € C | T — A not invertible}
point spectrum of T' C spectrum of T’

Resolvent set of T: C\ o(T) = {\ € C| T — X invertible}

Invertibility thms:
- Lemma: If T € B(V) := B(V,V) and ||T|| < 1 then:
I —T is invertible, with inverse [ + T +T? +--- € B(V)
- Cor: If T € B(V) and ||T|| < |A| then T'— A is invertible
(i.e. o(T) is contained in the closed ball of radius ||
centred at origin)
- Prop: Aut(v) :={T € B(V) | T invertible} is open in B(V)
- Lemma: If S, T € B(V) and ST = TS then:
S oT invertible = S and T both invertible, with
S '=TR=RT,T~!=SR= RS where R= (ST)!
(note: converse only holds when V finite-dim)

o(T) is a closed subset of {\ € C | |\ < ||T||} (the closed
ball of radius ||T|| centred at origin)

If T € Aut(V), then V||S]| < HT‘lH_l, T — S is invertible

. — T!
with (7~ )71 < =l
Spectral radius: r(T) = inf,en ||Tn||% < |7
- Prop: r(T) = limy, oo ||T7|| ™
- Prop: o(T) C{AeC||A <r(T)}

Spectral mapping thm: Given any p(z) € C|z], then
p(o(T)) = o(p(T)) (note: we are comparing sets here)



o(T) #+ @

e ) is an approximate eigenvalue of T: 3 unit vectors

(vn)nen € V such that (T — A)(v,) — 0 as n — oo

(0) A is an eigenvalue = X is an approx. eigenvalue
(1) A is an approx. eigenvalue = A € o(T)

(2) A € 9o(T) (boundary of o(T)) = A is an approx.
eigenvalue

e Note: To find the point spectrum and spectrum of T, find
all eigenvalues manually, and find 7(7"), and reason about
the spectrum

Dual Spaces

e Def: Given normed space V' (not necessarily Banach) over F:

Dual space of V: V* := B(V, F)

e V* is Banach (even though V might not be Banach)

e Finite: If dimV =n < oo then: V* X R*" =V

e Example: Given 1 < p < oo, then £} =/, (isometrically
isomorphic). Proof sketch:

- Let T': £y, — €3 where T(y)(x) = >, 7iyi

- Check that T is well-defined (i.e. the infinite sum
converges (from Hoélder’s))

- Check that T(y) : £, — R is linear

- Check that T'(y) is bounded (from Hélder’s)

-So T(y) € ¢,

- Check that T is injective (by showing that

T(y) =0 = y =0, or show that T is an isometry)
- Check that T' is surjective (take any L € £, and let
y; = L(e;), then show y = (y;) € £, and T'(y) = L)
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- (Note: to prove otherwise, use HB to find L such that

4, =0but L#0. Then0=L|,, =T(y),soy =0 (by
injectivity), so L = 0 (contradiction))

- Check that T is an isometry (i.e. [|[T(¥)|| = llylq Vv € ¢,

p is subadditive if it satisfies:

- p(v1 +v2) < p(v1) + p(vz2)
- p(Av) = Ap(v) YA >0

pis convex if VO <t < 1,Vvy,vp € V:
p(tvr + (1 — t)ve) < tp(v1) + (1 —t)p(v2)

subadditive = convex

Hahn-Banach thm: Given normed space V' (over R or C)
and subspace W C V, for any F' € W*, there exists f € V*

such that 7| = f and | ]| = 1.

Corollaries of Hahn-Banach:

-v=0 < f(v)=0VfeV*

-Yv eV, 3f, € V* such that ||f,|| =1 and f,(v) = ||v||
(such an f, is called a support functional of v)

- For T € B(V,W), the adjoint T* € B(W*,V*) defined by

T*(f) = f o T satisfies: | T*|| = ||T|

Double dual: There is a natural map

i:V = V** = (V*)* defined by i(v)(f) == f(v). It satisfies:
- i) < ]l

- ¢ is linear

- i is an isometry (and hence continuous and injective)

V is reflexive: ¢ (defined above) is an isomorphism

reflexive = Banach (since V** is Banach)

Baire Category Theorem

e A C X is nowhere dense in X: Int(4) = @

(interior of A)
<= A contains no non-empty open set

<= For any non-empty open set U C X, ANU is not
dense in U

<= X\ Aisdensein X

A C X is meagre in X: A is a countable union of nowhere
dense subsets of X

X is of first category: X is meagre in X

X is of second category: X is not meagre in X

= If (Uj);cy is a Countable collection of open dense
subsets of X then ", U2, # @

— ItX=U,_,X, Wlth X, all closed, then 3n € N
such that Int(X,,) # @

Baire category theorem:
X is a complete metric space = X is of second category

Cor: X complete and A C X is of first category
= X \ A is dense in X

Applications:

- R\ Q is dense

- Any infinite-dim Banach space has uncountable dimension

- There exists f € C[0, 1] such that f nowhere differentiable
(actually, the set of such f is dense in (C[0,1],]-]|..))

- Given X is a complete metric space, FF C C(X,R) (set of

cts functions) such that F' is pointwise bounded (i.e.

Vo € X, supep |f(7)] < 00), then:

there exists a non-empty open set U C X such that

SUPfeFzeU |f(z)] < o0

Principle of Uniform Boundedness

e Def: Given V Banach and W normed and F' C B(V,W):
Vo € V, suprep [T(v)[| < oo = suppep [T < o0

e Banach-Steinhaus thm: Given V Banach and W normed
and (T),,cy @ sequence in B(V, W):
Vo eV, (T(v) ey = T(v) €W = T € B(V,W)

e T:V — Wisopen: VopenU CV,T(U) open in W

e Open mapping theorem:
Given V, W Banach and T € B(V,W):
T surjective = T open

¢ Inverse mapping theorem:
Given V, W Banach and T' € B(V, W) bijective:
T-1e BW,V)

e Closed graph theorem:
Given V, W Banach and T : V — W linear map:
T bounded <= graph of T is closed (w.r.t.

1(v, )| = max{{[v]lv, [[wl[w})

e Graph of T: I'p .= {(v,T(v)) |[v eV} CV x W
(when T linear, I'r is a vector subspace of V' x W)

e Note: Banach-Steinhaus, open mapping, inverse mapping,
closed graph have non-linear versions too

Fourier Analysis

o A := {finite lin. combin. of € | n € Z} C C(R/27Z)
={P (") | PeC[t]} (C(R/2rZ): cts complex-val fn)

e Lemma: A is dense in C(R/27Z) w.r.t. | - |loo
(and hence C(R/277Z) separable)

e Fourier coefficients: f(n) = = [ f(z)e""* dx

o Sn(f)(@) =0y f(n)em
e There are some f € C(R/27Z) such that Sy(f) /4 f unif.
(so {€™* | n € Z} is not a Schauder basis of C(R/27Z))

e Dirichlet’s kernel: Dy (s) == ZngN etns

Hence Sy (f)(x) = 2= [* f(t)Dn(z — t) dt
sin(].\/—i;%)s

Explicit form: Dy (s) =
o 5+ [7 |Dn(s)|ds > Clog N for some C' > 0

o on(f) = w1 Cnso Sulf)

¢ Fejér’s kernel KN(
1

N+1 Zn o Dn(s)
$)Kn(x — s)ds

‘ 2
(Sm %s)
—
sm§

)=
Hence on(f = f

Explicit form: K N( )=

Properties:
- KN(S) Z 0
- [T Kn(s)ds=1

- For any 0 < d < m, Kn(s) 20 0 unif. for § < |s| <7
(Note: the last two properties imply that Ky (s) behaves
like the Dirac delta function, squished toward 0)

e Thm: oyn(f) N0 ¢ unif.
(so {e™® | n € Z} is a topological spanning set of C'(R/27Z))

e Uniqueness of Fourier series: Given fi, fo € C(R/27Z):
fi=fo < VneZ, fl(n) = f2(n)

o> ‘f(n)‘ < oo = (SNn(f))yen is Cauchy in
C(R/27Z) w.rt || - ||, and hence Sy (f) — f unif.

e Lemma: f € C*(R/27Z) = ‘f(n)‘ < & (k cts diffable)
(hence f € C%(R/27Z) = Sn(f) — f unif.)

e The completion of C(R/27Z) is LP(R/27Z) = LP[—m, 7] so
f(n) is well-defined for f € LP.

o p>q = LP(R/27Z) C LI(R/27Z)

¢ Riemann-Lebesgue lemma:
Given F : LY(R/21Z) — lo € C%: f s (f(n))
Image(F) C Cy

, then
nez

Properties about F:
- F is injective
- F is not surjective

Further results in Fourier analysis:

- f e CHR/27Z) = Sn(f) — f unif.

-3f € LYNR/27Z) s.t. (Sn(f)(2)) yey diverges Vo € [—, 7]
-3f € LY(R/27Z) s.t. ||Sn(f) = fll; #0as N —

ptwise

- If p> 1 then Sy(f) —— f almost everywhere f € LP,
furthermore Sy (f) — f wrt. || - [,

Inner Product Spaces

e Def: An inner product is a map (-,-) : VxV = Ror C
satisfying:

- {v1 + v, w) = (v1,w) + (ve, w)

- {Av,w) = v, w)

- (v,  w) = Mo, w)

- (v, w) = (w,v)
- (v,

(v, 1) + (v, w2))

>0
be inferred that (v,w; + wa) =
V,(-,-)) is an inner product space

v)
(it can
Then (

e An inner product gives rise to a norm ||v| == (v,v)2

e Cauchy-Schwarz inequality: |(v,w)| < ||v] - ||w]|
(or equivalently, [(v, w)|? = (v,v) - (w, w))
(or for std. inner prod.: [Y7, vwil” < Y0 s> Sy Jwil?)
with equality iff v and w are lin. dependent (i.e. one of
them is zero or one is a scalar multiple of the other)

e Parallelogram law:
A norm || - || arises from an inner product <=
Vo,w € V. 2lv]|? + 2[w]? = v+ w|f* + [lv — w|]®

e Polarisation formula: If V is an inner product space...
- ... over R: (z,y) = % (lz + ylI* = llz — ylI?)
=5 (lz +ylI* = =l —2||y||2)
-oover C (z,y) = 7> qp el + ey

. Cor
If (V, (-, >) is an inner product space with arised norm || - ||,
and (f/, 1) is the completion of (V|| - D,

then (-,-) extends to an inner product on V

e Hilbert space: complete inner product space



Orthogonality: z,y are orthogonal := (z,y) =0
orthogonal complement of X C V:

Xt ={veV|(rv)=0Vre X}

Properties of X

- XCYCV = XtDoY+t

- X1+ =Span X"

- X1t is a closed subspace of V'

- X C XJ_J_

_ XJ_ — XJ_J_J_

- XNXt={0}

Projection to U C V: linear map P : V — V such that
P? = P and Image(P) = U

(note: implies that u € U = P(u) = u)

A projection P of V onto U is equivalent to a subspace
W CVst. UdW =V. Then W = Ker(P) and
P:UsW —-U:u+w— u.

Prop: If 0 # U complete subspace of V, then V =U @ U+

Unique closest point lemma: Given x € V' (inner
product space) and a complete subspace U C V, there is a
unique ug € U s.t. d(z,U) = inf ey ||z — ul| = ||z — uo|

Orthogonal projection: Given an inner product space V/
and a complete subspace U C V, there exists a cts
projection P: V — V s.t. Image(P) = U and Ker(P) = Ut
(furthermore ||P|| = 1 and P(x) is the unique point in U
closest to x)

Such P is the orthogonal projection of V onto U

Dual spaces of Hilbert space:

VoeV,letl,:V = C:uwr (u,v) (soly € V¥)

Let j: V> V*:v—=1,

Then j is conjugate linear and isometric

(conjugate linear: j(vy +vo) = j(v1) 4 j(v2) and j(Av) = \j(v))
(isometric: [[j(v) ] = o]}

Riesz representation thm: j (above) is surjective, and
hence j is a conjugate linear isometric isomorphism

(note: it is not actually an isomorphism because of conjugation)
Reflexivity of Hilbert space: V reflexive and V* Hilbert

(with inner product (j(v1),j(v2))v> = (va,v1)v = (v1,v2)v)

|Orthonormal Basis|

Orthogonal system: {e,} of nonzero elements in (V, (-, "))
s.t. (eq,e8) =0Va #

Orthonormal system: orthogonal system with
lleall =1 Vo

Given an orthogonal system .S:
S is maximal <= Span(S) =V

Orthonormal basis: maximal orthonormal system

Thm: If V separable Hilbert space then V has a countable
orthonormal basis

Bessel’s inequality:
If V separable Hilbert space and {e, },en orthonormal basis
then YN € N, Vo € V, 2N, |(z,e,)|? < [|z?

Prop: If V separable and {e, },en orthonormal basis then:
Ve eV,x =37 (z,e)e;

-Va,y eV, <x7y> = Zfiﬁ%eiﬂ@my)

Ve eV, |z = (z,z) = Yooy {z, e;)|* (Parseval’s identity)

e Rmk: Orthogonal basis = Schauder basis

¢ Riesz-Fischer thm: Given V separable Hilbert space and
{en }nen orthonormal basis, then:
the linear map V' — £ : & +— ((x,en)),, oy is a Hilbert space
isomorphism (i.e. preserves (-.-), and hence must be
isometric)
(hence all sep. Hilbert spaces of infinite dim are isomorphic)

e Fourier analysis results:
- {€"*} <z is an orthonormal basis for L?(R/27Z) where

(f.9) = 5= " f(x)g(x)da
Vf e L2, Sn(f) = f wrt. ||l

.2
SVEe LA fIP=0 o ‘f(k)‘ (Parseval’s identity)
- The map F : L*(R/27Z) — ly : f (f(n))
isometric isomorphism of Hilbert spaces

-If f € CY(R/27Z) (continuously differentiable functions)
then Sy(f) = f wrt. || ||

is an
nez

Spectral Theory of Compact Self-Adjoint Operators

e Isometry: T : V — W bounded linear map s.t.
vvlva € ‘/a <T(U1),T(’U2)>W = <U17U2>V

e Unitary: T : V — W bounded linear map that is isometric
and surjective
(for finite-dim: 7' : V — V unitary < A'A= I)

e Bound of T: ||T| = supjz=1 (T(z), )]
llyll=1

e Given T : V — W a bounded linear map, we have
T* : W* — V* (adjoint map); but due to Riesz
representation thm, V' = V* and W = W* (up to
conjugation only) so we can redefine T* as T* : W — V
which is now linear in C (because the conjugation cancel
out)

o T*: W — V is characterised by (T'(v), w)w = (v, T*(w))v
(or equivalently (w, T (v))w = (T*(w),v)v

e I =T:V — W (reminder: T is an inner product space)

o T:V — Visself-adjoint: T=T*:V =V
Propositions when T' = T™*:
- o(T) C R (in particular, any eigenvalue of T is real)
- Eigenspaces of T for distinct eigenvalues are orthogonal

o Thm: If 7' =T then ||T|| = sup =, (T'(z), z)|

e Formula: If T'= T* then:
(T(x+y)z+y — (T(r—y),r—y) =4Re(T(2),y)

e Attainment of approximate eigenvalues: If T =T*
then either ||T|| or —||T|| (or both) are approx. eigenvalues
(hence r(T) = ||T|)

e Compact operators: Given V Banach, T: V — V is
compact := T(B(1)) is relatively compact (i.e. T(B(1)) is
compact) (note: B(1) is the closed ball of radius 1)
(equiv. sequential compactness cond.: given any bounded
sequence (x,) € V, (T'(z,)) has a convergent subsequence)
Propositions:

- T has finite rank (i.e. dimImage(T) < c0) = T compact
- The subset of compact operators in B(V) is closed in B(V)
- If V is Hilbert, then:

{ compact operators } = closure of { finite-rank operators }

Compactness and dual spaces:
- T compact <= T™ compact
- T*T compact =—> T compact

Spectral Theorem

Assume T is self-adjoint and compact in this whole section.

Eigenspace of eigenvalue A: Ny = Ker(T — AI)
A # 0 is an eigenvalue of T = N, is finite-dim

A # 0 is an approx. eigenvalue of T = ) is an eigenvalue
of T
(so ||IT|| or —||T|| (or both) must be eigenvalues of T')

Distribution of eigenvalues:

- {\] A\ is an eigenvalue of T'} is countable

-Ve >0, {\| |A| > ¢ and A is an eigenvalue of T'} is finite
(i.e. the only possible cluster point could be at A = 0)

Prop: V =Span{Ny | A € 0,(T)} (i-e. span of eigenspaces
is dense) (note: op,(T) := point spectrum of T')

Spectral thm: Given T compact self-adjoint operator on a
Hilbert space V, then:

there exists an orthonormal basis {e,,} of V' and a sequence
of (not necessarily distinct) real numbers {a,} such that:
-T(en) = anen

- Ve >0, {an | |an| > €} < 0

Cor: Given T compact self-adjoint operator on a Hilbert
space V, then: o(T) = 0,(T) = 0p(T) or o,(T) U {0}
(in particular, o(T') = 0,(T") when dimV < oo

and o(T) = op(T) U {0} when dimV = o0)




