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Functional Analysis

Tools

� Young’s ineq.: Given p, q > 1 such that 1
p + 1

q = 1 then

∀a, b ∈ C, |ab| ≤ |a|
p

p + |b|q
q

� Hölder’s ineq.: Given p, q > 1 such that 1
p + 1

q = 1 then

∀x,y ∈ Cn,
∑n
i=1 |xiyi| ≤ ‖x‖p‖y‖q (holds when n =∞ too)

Integral version:∫ b
a
|f(x)g(x)| dx ≤

(∫ b
a
|f(x)|p dx

) 1
p
(∫ b

a
|g(x)|q dx

) 1
q

� Minkowski’s ineq.: Given p > 1 then
∀x,y ∈ Cn, ‖x + y‖p ≤ ‖x‖p + ‖y‖p
(also works for `p and Lp spaces)

� Zorn’s lemma: Suppose a partially ordered set P has the
property that every chain in P has an upper bound in P .
Then the set P contains at least one maximal element.

Vector Spaces

� TODO: vect. space axioms

� x1, . . . , xn (fin.) are lin. indep.:
α1x1 + · · ·+ αnxn = 0 =⇒ α1 = · · · = αn = 0

� Σ spans V : ∀v ∈ V , v is (fin.) lin. combin. of vectors in V

� M ⊆ X is basis for X: any fin. set of vectors in M are
lin. indep., and M spans X

� Equiv. basis: Σ is a basis of V
⇐⇒ Σ is a maximal lin. indep. subset of V
⇐⇒ Σ is a minimal spanning subset of V

� Existence of basis: every vector space has a basis
- Proof using Zorn’s lemma: Σ := {B ⊆ V | B is lin. indep.}

� Cardinality of basis: all bases of V have same cardinality

� X is finite-dimensional: bases of X has finite cardinality

Metric Spaces

� Def : set X with distance d satisfying:
- d is real-valued, finite, and non-negative
- d(x, y) = 0 ⇐⇒ x = y
- d(x, y) = d(y, x) (symmetry)
- d(x, y) ≤ d(x, z) + d(z, y) (4 ineq.)

� Equiv. continuity: T : X → Y is cts.
⇐⇒ ∀ open set S ⊆ Y , T−1(S) is open subset of X

� Convergent =⇒ Cauchy
In complete metric spaces: Convergent ⇐⇒ Cauchy

� Isometry: distance-preserving transformation

� Complete: Every Cauchy sequence converges

� Every Cauchy sequence is bounded

� Continuous ⇐⇒ every open set has an open pre-image
⇐⇒ every closed set has a closed pre-image

� f : X → Y is a homeomorphism: f bijective; f & f−1 cts

Normed Spaces

� Def : set X with norm ‖ · ‖ satisfying:
- ‖x‖ ≥ 0
- ‖x‖ = 0 ⇐⇒ x = 0
- ‖αx‖ = |α|‖x‖ (scaling)
- ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (4 ineq.)
Normed space gives rise to a metric d(x, y) := ‖x− y‖

� Normed space: vector space with norm (normed space is
cts. in both arguments for both VA and SM)

� Banach space: normed spaces whose metric is complete

� Sequence spaces: `p :=
{
a ∈ RN |

∑∞
i=0 |ai|

p
<∞

}
`∞ :=

{
a ∈ RN | sup∞i=0 |ai| <∞

}
are Banach spaces

� Thm: subspace Y of Banach space X is complete
⇐⇒ Y is closed wrt X

� Isometry: distance-preserving transformation

� Completion thm: Given normed space X, there is a
Banach space X̂ and an isometry A from X onto a
subspace W of X̂ which is dense in X̂. The space X̂ is
unique up to isometry.
(Metric completion applies for general metric spaces too)

� ‖ · ‖ and ‖ · ‖′ are equivalent:
∃a, b > 0 such that ∀v ∈ V, a‖v‖ ≤ ‖v‖′ ≤ b‖v‖

� Finite-dim vector spaces: On any finite-dim V (over R
or C):
- Any two norms are equivalent
- B(1) is compact
- V is complete (hence Banach)
- Any subspace W ⊆ V is complete (hence closed in V )

� Function spaces: ‖f‖p :=
(∫ b

a
|f(x)|p dx

) 1
p

Facts:
- p =∞: (C[0, 1], ‖·‖∞) Banach
- p <∞: (C[0, 1], ‖·‖p) not complete
- (Lp[0, 1], ‖·‖p) := (V/V0, ‖·‖p) is a (dense) completion of
(C[0, 1], ‖·‖p) where

V :=
{
f : [0, 1]→ R | f measurable,

∫ 1

0
|f(x)|p dx <∞

}
and

V0 :=
{
f ∈ V |

∫ 1

0
|f(x)|p dx = 0

}
(in other words, Lp[0, 1]

is like V , but where functions that agree almost everywhere
are identified)

Linear Operators

� Def : T : V →W where V,W are vector spaces over F and
T (x+ y) = Tx+ Ty [VA] and T (αx) = αTx [SM]

� E.g. Integration as lin. op.: T : L1([a, b])→ L1([a, b])

where (Tx)(t) :=
∫ t
a
x(τ)dτ is a lin. op.

� Subspaces: lin. op. T : X → Y :
T (X) is a subspace of Y ; Ker(T ) is a subspace of X

� Inverse: lin. op. T : X → Y :
- T is injective ⇐⇒ (Tx = 0 =⇒ x = 0)
- if T−1 exists, then it is a lin. op. T−1 : Y → X

� lin. op. T : X → Y is bounded:
∃c > 0 such that ∀x ∈ X, ‖Tx‖ ≤ c‖x‖

� ‖T‖ = supx∈X
x 6=0

‖Tx‖
‖x‖ = sup x∈X

‖x‖=1
‖Tx‖

= sup x∈X
‖x‖=c

‖Tx‖
c = sup x∈X

‖x‖≤c

‖Tx‖
c = sup x∈X

‖x‖<c

‖Tx‖
c (∀c > 0)

� Equiv boundedness & continuity: lin. op. T : X → Y :
T is uniform cts.
⇐⇒ T is cts.
⇐⇒ T is cts. at 0 ∈ V
⇐⇒ T is cts. at some x ∈ V
⇐⇒ T is bounded

� Cor.: If lin. op. T : X → Y is bounded then:
- xn → x =⇒ T (xn)→ T (x)
- Ker(T ) is closed (pre-image of closed set on cts. func.)

� Finite: Any lin. op. T : V →W where V finite-dim is cts

� Thm norm space: X, Y are normed spaces over the same
field:
- B(X,Y ) is a subspace of L(X,Y ), and it is a normed
space with norm ‖T‖
(B(X,Y ) : bounded lin. ops.; L(X,Y ) : set of lin. ops)

� Quotient sp. & projection: If U closed subspace of V :
- V/U inherits norm and projection map is cts
- V Banach =⇒ V/U Banach

� Continuous decomposition into projection and
isomorphism (tutorial): If T : V →W cts:
T : V/Ker(T )→W (s.t. T = T ◦ P , P projection map)
injective, cts,

∥∥T∥∥ = ‖T‖

� Lin. op. is Banach: If Y is Banach and X is a normed
space (not necessarily Banach), then B(X,Y ) is Banach

� (Continuous) dual space of V : V ∗ := B(X,R)
Algebraic dual space of V : Hom(X,R) (set of
structure-preserving maps from X to R)

� Thm dual: The dual space of a normed space is Banach

� Invertibility: T ∈ B(V,W ) is invertible := ∃S ∈ B(V,W )
such that TS = IdW and ST = IdV

� Automorphism:
Aut(V ) := {T ∈ B(V, V ) | T is invertible}
(implies that T−1 ∈ B(V, V ) and hence is bounded too)

� Aut(V ) is an open subset of B(V )

� Homeomorphism: continuous function that has a
continuous inverse function

� Homomorphism: structure preserving map

Basis

� Uncountable (algebraic) basis: If (V, ‖·‖) is infinite-dim
Banach space, then dimV (i.e. cardinality of any basis) is
uncountable (using the normal (finite/algebraic/Hamel)
basis)

� V is separable: V has a countable dense subset

� S is a topological spanning set: (algebraic) span of S is
dense in V

� (ei)i∈N ∈ V is a Schauder basis:
every v ∈ V can be expressed as v =

∑∞
i=1 aiei, and∑∞

i=1 aiei =
∑∞
i=1 biei =⇒ ∀i ∈ N, ai = bi

� V has a Schauder basis
=⇒ V has a countable topological spanning set

=⇒ V is separable

Stone-Weierstrass Theorem

� Continuous functions on compact space is Banach:
If X a compact metric space then (C(X,R), ‖·‖∞) is a
Banach space (where C(X,R) is the set of continuous
functions from X to R)

� X is an R-Algebra: X is a R-vector space and a ring,
where the ring addition is equivalent to the vector addition

� Y ⊆ X is a subalgebra: vector subspace that is closed
under ring multiplication (so Y is also an algebra)

� Statement: Let X be a compact metric space.
If A ⊆ C(X,R) with:
- 1 ∈ A (1 is the unit of the ring C(X,R))
- A is a subalgebra
- A separates points of X

(i.e. ∀x1 6= x2 ∈ X,∃f ∈ A such that f(x1) 6= f(x2))
Then A is dense in C(X,R) (using ‖·‖∞)
(For C (instead of R), also require that f ∈ A =⇒ f ∈ A)

� Separability of bdd cts functions: (C[0, 1], ‖·‖∞) is
separable (can be proved with SW by letting A be the set
of all polynomials with R coef., and then observing that the
set of all polynomials with Q coef. is dense in A)

Eigenvalues & Eigenvectors

� Def : Given T : V → V and v ∈ V \ {0} and λ ∈ F , then:
v is an eigenvector of T , and λ is an eigenvalue of T

� Finite: If T is finite, then:
λ is an eigenvalue ⇐⇒ T − λ is not injective ⇐⇒
T − λ is not invertible ⇐⇒ det(T − λ) = 0

� Point spectrum of T : {λ ∈ C | λ is an eigenvalue of T}
Spectrum of T : σ(T ) = {λ ∈ C | T − λ not invertible}
point spectrum of T ⊆ spectrum of T
Resolvent set of T : C \ σ(T ) = {λ ∈ C | T − λ invertible}

� Invertibility thms:
- Lemma: If T ∈ B(V ) := B(V, V ) and ‖T‖ < 1 then:

I − T is invertible, with inverse I + T + T 2 + · · · ∈ B(V )
- Cor: If T ∈ B(V ) and ‖T‖ < |λ| then T − λ is invertible

(i.e. σ(T ) is contained in the closed ball of radius |λ|
centred at origin)
- Prop: Aut(v) := {T ∈ B(V ) | T invertible} is open in B(V )
- Lemma: If S, T ∈ B(V ) and ST = TS then:

S ◦ T invertible =⇒ S and T both invertible, with
S−1 = TR = RT , T−1 = SR = RS where R = (ST )−1

(note: converse only holds when V finite-dim)

� σ(T ) is a closed subset of {λ ∈ C | |λ| ≤ ‖T‖} (the closed
ball of radius ‖T‖ centred at origin)

� If T ∈ Aut(V ), then ∀ ‖S‖ <
∥∥T−1∥∥−1, T − S is invertible

with
∥∥(T − S)−1

∥∥ ≤ ‖T−1‖
1−‖T−1‖·‖S‖

� Spectral radius: r(T ) = infn∈N ‖Tn‖
1
n ≤ ‖T‖

- Prop: r(T ) = limn→∞ ‖Tn‖
1
n

- Prop: σ(T ) ⊆ {λ ∈ C | |λ| ≤ r(T )}

� Spectral mapping thm: Given any p(x) ∈ C[x], then
p(σ(T )) = σ(p(T )) (note: we are comparing sets here)



� σ(T ) 6= ∅

� λ is an approximate eigenvalue of T : ∃ unit vectors
(vn)n∈N ∈ V such that (T − λ)(vn)→ 0 as n→∞
(0) λ is an eigenvalue =⇒ λ is an approx. eigenvalue
(1) λ is an approx. eigenvalue =⇒ λ ∈ σ(T )
(2) λ ∈ ∂σ(T ) (boundary of σ(T )) =⇒ λ is an approx.
eigenvalue

� Note: To find the point spectrum and spectrum of T , find
all eigenvalues manually, and find r(T ), and reason about
the spectrum

Dual Spaces

� Def : Given normed space V (not necessarily Banach) over F :
Dual space of V : V ∗ := B(V, F )

� V ∗ is Banach (even though V might not be Banach)

� Finite: If dimV = n <∞ then: V ∗ ∼= Rn ∼= V

� Example: Given 1 < p <∞, then `∗p
∼= `q (isometrically

isomorphic). Proof sketch:
- Let T : `q → `∗p where T (y)(x) =

∑
i xiyi

- Check that T is well-defined (i.e. the infinite sum
converges (from Hölder’s))
- Check that T (y) : `p → R is linear
- Check that T (y) is bounded (from Hölder’s)
- So T (y) ∈ `∗p
- Check that T is injective (by showing that
T (y) = 0 =⇒ y = 0, or show that T is an isometry)
- Check that T is surjective (take any L ∈ `∗p, and let
yi = L(ei), then show y = (yi) ∈ `q and T (y) = L)

- (Note: to prove otherwise, use HB to find L such that
L
∣∣
`∗p

= 0 but L 6= 0. Then 0 = L
∣∣
`∗p

= T (y), so y = 0 (by

injectivity), so L = 0 (contradiction))
- Check that T is an isometry (i.e. ‖T (y)‖ = ‖y‖q ∀y ∈ `q

� p is subadditive if it satisfies:
- p(v1 + v2) ≤ p(v1) + p(v2)
- p(λv) = λp(v) ∀λ > 0

� p is convex if ∀0 ≤ t ≤ 1,∀v1, v2 ∈ V :
p(tv1 + (1− t)v2) ≤ tp(v1) + (1− t)p(v2)

� subadditive =⇒ convex

� Hahn-Banach thm: Given normed space V (over R or C)
and subspace W ⊆ V , for any F ∈W ∗, there exists f̃ ∈ V ∗

such that f̃
∣∣∣
W

= f and
∥∥∥f̃∥∥∥ = ‖f‖.

� Corollaries of Hahn-Banach:
- v = 0 ⇐⇒ f(v) = 0 ∀f ∈ V ∗
- ∀v ∈ V , ∃fv ∈ V ∗ such that ‖fv‖ = 1 and fv(v) = ‖v‖

(such an fv is called a support functional of v)
- For T ∈ B(V,W ), the adjoint T ∗ ∈ B(W ∗, V ∗) defined by
T ∗(f) := f ◦ T satisfies: ‖T ∗‖ = ‖T‖

� Double dual: There is a natural map
i : V → V ∗∗ := (V ∗)∗ defined by i(v)(f) := f(v). It satisfies:
- ‖i(v)‖ ≤ ‖v‖
- i is linear
- i is an isometry (and hence continuous and injective)

� V is reflexive: i (defined above) is an isomorphism

� reflexive =⇒ Banach (since V ∗∗ is Banach)

Baire Category Theorem

� A ⊆ X is nowhere dense in X: Int(A) = ∅ (interior of A)
⇐⇒ A contains no non-empty open set
⇐⇒ For any non-empty open set U ⊆ X, A ∩ U is not
dense in U
⇐⇒ X \A is dense in X

� A ⊆ X is meagre in X: A is a countable union of nowhere
dense subsets of X

� X is of first category: X is meagre in X

� X is of second category: X is not meagre in X
⇐⇒ If (Ui)i∈N is a countable collection of open dense
subsets of X then

⋂
i U
∞
i=1 6= ∅

⇐⇒ If X =
⋃∞
n=1Xn with Xn all closed, then ∃n ∈ N

such that Int(Xn) 6= ∅

� Baire category theorem:
X is a complete metric space =⇒ X is of second category

� Cor: X complete and A ⊆ X is of first category
=⇒ X \A is dense in X

� Applications:
- R \Q is dense
- Any infinite-dim Banach space has uncountable dimension
- There exists f ∈ C[0, 1] such that f nowhere differentiable

(actually, the set of such f is dense in (C[0, 1], ‖·‖∞))
- Given X is a complete metric space, F ⊆ C(X,R) (set of
cts functions) such that F is pointwise bounded (i.e.
∀x ∈ X, supf∈F |f(x)| <∞), then:
there exists a non-empty open set U ⊆ X such that
supf∈F,x∈U |f(x)| <∞

Principle of Uniform Boundedness

� Def : Given V Banach and W normed and F ⊆ B(V,W ):
∀v ∈ V, supT∈F ‖T (v)‖ <∞ =⇒ supT∈F ‖T‖ <∞

� Banach-Steinhaus thm: Given V Banach and W normed
and (Tn)n∈N a sequence in B(V,W ):
∀v ∈ V, (Tn(v))n∈N → T (v) ∈W =⇒ T ∈ B(V,W )

� T : V →W is open: ∀ open U ⊆ V , T (U) open in W

� Open mapping theorem:
Given V,W Banach and T ∈ B(V,W ):
T surjective =⇒ T open

� Inverse mapping theorem:
Given V,W Banach and T ∈ B(V,W ) bijective:
T−1 ∈ B(W,V )

� Closed graph theorem:
Given V,W Banach and T : V →W linear map:
T bounded ⇐⇒ graph of T is closed (w.r.t.
‖(v, w)‖ := max{‖v‖V , ‖w‖W })

� Graph of T : ΓT := {(v, T (v)) | v ∈ V } ⊆ V ×W
(when T linear, ΓT is a vector subspace of V ×W )

� Note: Banach-Steinhaus, open mapping, inverse mapping,
closed graph have non-linear versions too

Fourier Analysis

� A :=
{

finite lin. combin. of einx | n ∈ Z
}
⊆ C(R/2πZ)

=
{
P
(
eix
)
| P ∈ C[t]

}
(C(R/2πZ): cts complex-val fn)

� Lemma: A is dense in C(R/2πZ) w.r.t. ‖ · ‖∞
(and hence C(R/2πZ) separable)

� Fourier coefficients: f̂(n) := 1
2π

∫ π
−π f(x)e−inx dx

� SN (f)(x) :=
∑N
n=−N f̂(n)einx

� There are some f ∈ C(R/2πZ) such that SN (f) 6→ f unif.
(so

{
einx | n ∈ Z

}
is not a Schauder basis of C(R/2πZ))

� Dirichlet’s kernel: DN (s) :=
∑N
n=−N e

ins

Hence SN (f)(x) = 1
2π

∫ π
−π f(t)DN (x− t) dt

Explicit form: DN (s) =
sin(N+ 1

2 )s
sin s

2

�
1
2π

∫ π
−π |DN (s)| ds > C logN for some C > 0

� σN (f) := 1
N+1

∑N
n=0 Sn(f)

� Fejér’s kernel: KN (s) = 1
N+1

∑N
n=0Dn(s)

Hence σN (f)(x) = 1
2π

∫ π
−π f(s)KN (x− s) ds

Explicit form: KN (s) = 1
N+1

(
sin N+1

2 s

sin s
2

)2
Properties:
- KN (s) ≥ 0
- 1

2π

∫ π
−πKN (s) ds = 1

- For any 0 < δ � π, KN (s)
N→∞−−−−→ 0 unif. for δ ≤ |s| ≤ π

(Note: the last two properties imply that KN (s) behaves
like the Dirac delta function, squished toward 0)

� Thm: σN (f)
N→∞−−−−→ f unif.

(so
{
einx | n ∈ Z

}
is a topological spanning set of C(R/2πZ))

� Uniqueness of Fourier series: Given f1, f2 ∈ C(R/2πZ):

f1 = f2 ⇐⇒ ∀n ∈ Z, f̂1(n) = f̂2(n)

�

∑∞
n=−∞

∣∣∣f̂(n)
∣∣∣ <∞ =⇒ (SN (f))N∈N is Cauchy in

C(R/2πZ) w.r.t ‖ · ‖∞, and hence SN (f)→ f unif.

� Lemma: f ∈ Ck(R/2πZ) =⇒
∣∣∣f̂(n)

∣∣∣ ≤ C
nk (k cts diffable)

(hence f ∈ C2(R/2πZ) =⇒ SN (f)→ f unif.)

� The completion of C(R/2πZ) is Lp(R/2πZ) = Lp[−π, π] so

f̂(n) is well-defined for f ∈ Lp.

� p ≥ q =⇒ Lp(R/2πZ) ⊆ Lq(R/2πZ)

� Riemann-Lebesgue lemma:

Given F : L1(R/2πZ)→ `∞ ⊆ CZ : f 7→
(
f̂(n)

)
n∈Z

, then

Image(F) ⊆ C0

� Properties about F :
- F is injective
- F is not surjective

� Further results in Fourier analysis:
- f ∈ C1(R/2πZ) =⇒ SN (f)→ f unif.
- ∃f ∈ L1(R/2πZ) s.t. (SN (f)(x))N∈N diverges ∀x ∈ [−π, π]
- ∃f ∈ L1(R/2πZ) s.t. ‖SN (f)− f‖1 6→ 0 as N →∞
- If p > 1 then SN (f)

ptwise−−−−→ f almost everywhere f ∈ Lp,
furthermore SN (f)→ f w.r.t. ‖ · ‖p

Inner Product Spaces

� Def : An inner product is a map 〈·, ·〉 : V × V → R or C
satisfying:
- 〈v1 + v2, w〉 = 〈v1, w〉+ 〈v2, w〉
- 〈λv,w〉 = λ〈v, w〉
- 〈v, λw〉 = λ〈v, w〉
- 〈v, w〉 = 〈w, v〉
- 〈v, v〉 ≥ 0
(it can be inferred that 〈v, w1 + w2〉 = 〈v, w1〉+ 〈v, w2〉)
Then (V, 〈·, ·〉) is an inner product space

� An inner product gives rise to a norm ‖v‖ := 〈v, v〉 12

� Cauchy-Schwarz inequality: |〈v, w〉| ≤ ‖v‖ · ‖w‖
(or equivalently, |〈v, w〉|2 = 〈v, v〉 · 〈w,w〉)
(or for std. inner prod.: |

∑n
i=1 viwi|

2 ≤
∑n
j=1 |vj |

2∑n
k=1 |wk|

2
)

with equality iff v and w are lin. dependent (i.e. one of
them is zero or one is a scalar multiple of the other)

� Parallelogram law:
A norm ‖ · ‖ arises from an inner product ⇐⇒
∀v, w ∈ V, 2‖v‖2 + 2‖w‖2 = ‖v + w‖2 + ‖v − w‖2

� Polarisation formula: If V is an inner product space...
- ... over R: 〈x, y〉 = 1

4

(
‖x+ y‖2 − ‖x− y‖2

)
= 1

2

(
‖x+ y‖2 − ‖x‖2 − ‖y‖2

)
- ... over C: 〈x, y〉 = 1

4

∑
ε=±1±i ε‖x+ εy‖2

� Cor:
If (V, 〈·, ·〉) is an inner product space with arised norm ‖ · ‖,
and (V̂ , ‖̂ · ‖) is the completion of (V, ‖ · ‖),
then 〈·, ·〉 extends to an inner product on V̂

� Hilbert space: complete inner product space



� Orthogonality: x, y are orthogonal := 〈x, y〉 = 0
orthogonal complement of X ⊆ V :
X⊥ := {v ∈ V | 〈x, v〉 = 0 ∀x ∈ X}
Properties of X⊥:
- X ⊆ Y ⊆ V =⇒ X⊥ ⊇ Y ⊥

- X⊥ = SpanX
⊥

- X⊥ is a closed subspace of V
- X ⊆ X⊥⊥
- X⊥ = X⊥⊥⊥

- X ∩X⊥ = {0}

� Projection to U ⊆ V : linear map P : V → V such that
P 2 = P and Image(P ) = U
(note: implies that u ∈ U =⇒ P (u) = u)
A projection P of V onto U is equivalent to a subspace
W ⊆ V s.t. U ⊕W = V . Then W = Ker(P ) and
P : U ⊕W → U : u+ w 7→ u.

� Prop: If 0 6= U complete subspace of V , then V = U ⊕ U⊥

� Unique closest point lemma: Given x ∈ V (inner
product space) and a complete subspace U ⊆ V , there is a
unique u0 ∈ U s.t. d(x, U) := infu∈U ‖x− u‖ = ‖x− u0‖

� Orthogonal projection: Given an inner product space V
and a complete subspace U ⊆ V , there exists a cts
projection P : V → V s.t. Image(P ) = U and Ker(P ) = U⊥

(furthermore ‖P‖ = 1 and P (x) is the unique point in U
closest to x)
Such P is the orthogonal projection of V onto U

� Dual spaces of Hilbert space:
∀v ∈ V , let lv : V → C : u 7→ 〈u, v〉 (so lV ∈ V ∗)
Let j : V → V ∗ : v → lv
Then j is conjugate linear and isometric
(conjugate linear: j(v1 + v2) = j(v1) + j(v2) and j(λv) = λj(v))
(isometric: ‖j(v)‖ = ‖v‖)

� Riesz representation thm: j (above) is surjective, and
hence j is a conjugate linear isometric isomorphism
(note: it is not actually an isomorphism because of conjugation)

� Reflexivity of Hilbert space: V reflexive and V ∗ Hilbert

(with inner product 〈j(v1), j(v2)〉V ∗ = 〈v2, v1〉V = 〈v1, v2〉V )

Orthonormal Basis

� Orthogonal system: {eα} of nonzero elements in (V, 〈·, ·〉)
s.t. 〈eα, eβ〉 = 0 ∀α 6= β

� Orthonormal system: orthogonal system with
‖eα‖ = 1 ∀α

� Given an orthogonal system S:
S is maximal ⇐⇒ Span(S) = V

� Orthonormal basis: maximal orthonormal system

� Thm: If V separable Hilbert space then V has a countable
orthonormal basis

� Bessel’s inequality:
If V separable Hilbert space and {en}n∈N orthonormal basis

then ∀N ∈ N, ∀x ∈ V,
∑N
i=1 |〈x, ei〉|2 ≤ ‖x‖2

� Prop: If V separable and {en}n∈N orthonormal basis then:
- ∀x ∈ V, x =

∑∞
i=1〈x, ei〉ei

- ∀x, y ∈ V, 〈x, y〉 =
∑∞
i=1〈x, ei〉〈ei, y〉

- ∀x ∈ V, ‖x‖2 = 〈x, x〉 =
∑∞
i=1 |〈x, ei〉|2 (Parseval’s identity)

� Rmk: Orthogonal basis =⇒ Schauder basis

� Riesz-Fischer thm: Given V separable Hilbert space and
{en}n∈N orthonormal basis, then:
the linear map V → `2 : x 7→ (〈x, en〉)n∈N is a Hilbert space
isomorphism (i.e. preserves 〈·.·〉, and hence must be
isometric)
(hence all sep. Hilbert spaces of infinite dim are isomorphic)

� Fourier analysis results:
-
{
einx

}
n∈Z is an orthonormal basis for L2(R/2πZ) where

〈f, g〉 := 1
2π

∫ π
−π f(x)g(x) dx

- ∀f ∈ L2, SN (f)→ f w.r.t. ‖·‖2
- ∀f ∈ L2, ‖f‖2 =

∑∞
k=−∞

∣∣∣f̂(k)
∣∣∣2 (Parseval’s identity)

- The map F : L2(R/2πZ)→ `2 : f 7→
(
f̂(n)

)
n∈Z

is an

isometric isomorphism of Hilbert spaces
- If f ∈ C1(R/2πZ) (continuously differentiable functions)
then SN (f)→ f w.r.t. ‖ · ‖∞

Spectral Theory of Compact Self-Adjoint Operators

� Isometry: T : V →W bounded linear map s.t.
∀v1, v2 ∈ V, 〈T (v1), T (v2)〉W = 〈v1, v2〉V

� Unitary: T : V →W bounded linear map that is isometric
and surjective

(for finite-dim: T : V → V unitary ⇐⇒ A
t
A = I)

� Bound of T : ‖T‖ = sup‖x‖=1
‖y‖=1

|〈T (x), y〉|

� Given T : V →W a bounded linear map, we have
T ∗ : W ∗ → V ∗ (adjoint map); but due to Riesz
representation thm, V ∼= V ∗ and W ∼= W ∗ (up to
conjugation only) so we can redefine T ∗ as T ∗ : W → V
which is now linear in C (because the conjugation cancel
out)

� T ∗ : W → V is characterised by 〈T (v), w〉W = 〈v, T ∗(w)〉V
(or equivalently 〈w, T (v)〉W = 〈T ∗(w), v〉V )

� T ∗∗ = T : V →W (reminder: T is an inner product space)

� T : V → V is self-adjoint: T = T ∗ : V → V
Propositions when T = T ∗:
- σ(T ) ⊆ R (in particular, any eigenvalue of T is real)
- Eigenspaces of T for distinct eigenvalues are orthogonal

� Thm: If T = T ∗ then ‖T‖ = sup‖x‖=1 |〈T (x), x〉|

� Formula: If T = T ∗ then:
〈T (x+ y), x+ y〉 − 〈T (x− y), x− y〉 = 4 Re〈T (x), y〉

� Attainment of approximate eigenvalues: If T = T ∗

then either ‖T‖ or −‖T‖ (or both) are approx. eigenvalues
(hence r(T ) = ‖T‖)

� Compact operators: Given V Banach, T : V → V is
compact := T (B(1)) is relatively compact (i.e. T (B(1)) is
compact) (note: B(1) is the closed ball of radius 1)
(equiv. sequential compactness cond.: given any bounded
sequence (xn) ∈ V , (T (xn)) has a convergent subsequence)
Propositions:
- T has finite rank (i.e. dim Image(T ) <∞) =⇒ T compact
- The subset of compact operators in B(V ) is closed in B(V )
- If V is Hilbert, then:
{ compact operators } = closure of { finite-rank operators }

� Compactness and dual spaces:
- T compact ⇐⇒ T ∗ compact
- T ∗T compact =⇒ T compact

Spectral Theorem

Assume T is self-adjoint and compact in this whole section.

� Eigenspace of eigenvalue λ: Nλ := Ker(T − λI)

� λ 6= 0 is an eigenvalue of T =⇒ Nλ is finite-dim

� λ 6= 0 is an approx. eigenvalue of T =⇒ λ is an eigenvalue
of T
(so ‖T‖ or −‖T‖ (or both) must be eigenvalues of T )

� Distribution of eigenvalues:
- {λ | λ is an eigenvalue of T} is countable
- ∀ε > 0, {λ | |λ| > ε and λ is an eigenvalue of T} is finite
(i.e. the only possible cluster point could be at λ = 0)

� Prop: V = Span {Nλ | λ ∈ σp(T )} (i.e. span of eigenspaces
is dense) (note: σp(T ) := point spectrum of T )

� Spectral thm: Given T compact self-adjoint operator on a
Hilbert space V , then:
there exists an orthonormal basis {en} of V and a sequence
of (not necessarily distinct) real numbers {an} such that:
- T (en) = anen
- ∀ε > 0, |{an | |an| > ε}| <∞

� Cor: Given T compact self-adjoint operator on a Hilbert
space V , then: σ(T ) = σp(T ) = σp(T ) or σp(T ) ∪ {0}
(in particular, σ(T ) = σp(T ) when dimV <∞

and σ(T ) = σp(T ) ∪ {0} when dimV =∞)


