MA4211 Functional Analysis

Tools

- Young's ineq.: Given p, q > 1 such that $\frac{1}{p} + \frac{1}{q} = 1$ then $\forall a, b \in \mathbb{C}, |ab| \leq \frac{|a|^p}{n} + \frac{|b|^q}{q}$
- Hölder's ineq.: Given p, q > 1 such that $\frac{1}{p} + \frac{1}{q} = 1$ then $\forall \mathbf{x}, \mathbf{y} \in \mathbb{C}^n, \sum_{i=1}^n |x_i y_i| \le \|\mathbf{x}\|_p \|\mathbf{y}\|_q$ (holds when $n = \infty$ too) Integral version:

 $\int_{a}^{b} |f(x)g(x)| \, dx \le \left(\int_{a}^{b} |f(x)|^{p} \, dx\right)^{\frac{1}{p}} \left(\int_{a}^{b} |g(x)|^{q} \, dx\right)^{\frac{1}{q}}$

- Minkowski's ineq.: Given p > 1 then $\forall \mathbf{x}, \mathbf{y} \in \mathbb{C}^n, \|\mathbf{x} + \mathbf{y}\|_p \leq \|\mathbf{x}\|_p + \|\mathbf{y}\|_p$ (also works for ℓ^p and L^p spaces)
- Zorn's lemma: Suppose a partially ordered set P has the property that every chain in P has an upper bound in P. Then the set P contains at least one maximal element.

Vector Spaces

- TODO: vect. space axioms
- x_1, \ldots, x_n (fin.) are lin. indep.: $\alpha_1 x_1 + \dots + \alpha_n x_n = 0 \implies \alpha_1 = \dots = \alpha_n = 0$
- Σ spans $V: \forall v \in V, v$ is (fin.) lin. combin. of vectors in V
- $M \subseteq X$ is basis for X: any fin. set of vectors in M are lin. indep., and M spans X

• Equiv. basis: Σ is a basis of V $\iff \Sigma$ is a maximal lin. indep. subset of V $\iff \Sigma$ is a minimal spanning subset of V

- Existence of basis: every vector space has a basis - Proof using Zorn's lemma: $\Sigma := \{B \subset V \mid B \text{ is lin. indep.}\}$
- Cardinality of basis: all bases of V have same cardinality
- X is finite-dimensional: bases of X has finite cardinality

Metric Spaces

- **Def**: set X with distance d satisfying:
- *d* is real-valued, finite, and non-negative
- $-d(x,y) = 0 \iff x = y$

-d(x,y) = d(y,x) (symmetry)

- $-d(x,y) \le d(x,z) + d(z,y) \ (\triangle \text{ ineq.})$
- Equiv. continuity: $T: X \to Y$ is cts. $\iff \forall$ open set $S \subseteq Y, T^{-1}(S)$ is open subset of X
- Convergent \implies Cauchy In complete metric spaces: Convergent \iff Cauchy
- **Isometry**: distance-preserving transformation
- **Complete**: Every Cauchy sequence converges
- Every Cauchy sequence is bounded
- Continuous \iff every open set has an open pre-image \iff every closed set has a closed pre-image
- $f: X \to Y$ is a homeomorphism: f bijective; f & f^{-1} cts

Normed Spaces

- **Def**: set X with norm $\|\cdot\|$ satisfying:
- $||x|| \ge 0$
- $\|x\| = 0 \iff x = 0$
- $\|\alpha x\| = |\alpha| \|x\| \text{ (scaling)}$
- $||x + y|| \le ||x|| + ||y|| (\triangle \text{ ineq.})$
- Normed space gives rise to a metric $d(x, y) \coloneqq ||x y||$
- Normed space: vector space with norm (normed space is cts. in both arguments for both VA and SM)
- Banach space: normed spaces whose metric is complete
- Sequence spaces: $\ell^p \coloneqq \left\{ \mathbf{a} \in \mathbb{R}^{\mathbb{N}} \mid \sum_{i=0}^{\infty} |a_i|^p < \infty \right\}$ $\ell^{\infty} \coloneqq \left\{ \mathbf{a} \in \mathbb{R}^{\mathbb{N}} \mid \sup_{i=0}^{\infty} |a_i| < \infty \right\}$ are Banach spaces
- Thm: subspace Y of Banach space X is complete $\iff Y \text{ is closed wrt } X$
- Isometry: distance-preserving transformation
- Completion thm: Given normed space X, there is a Banach space \hat{X} and an isometry A from X onto a subspace W of \hat{X} which is dense in \hat{X} . The space \hat{X} is unique up to isometry. (Metric completion applies for general metric spaces too)
- $\|\cdot\|$ and $\|\cdot\|'$ are equivalent: $\exists a, b > 0$ such that $\forall v \in V, a \|v\| \le \|v\|' \le b \|v\|$
- Finite-dim vector spaces: On any finite-dim V (over \mathbb{R} or \mathbb{C}):
- Any two norms are equivalent
- B(1) is compact
- V is complete (hence Banach)
- Any subspace $W \subseteq V$ is complete (hence closed in V)
- Function spaces: $||f||_p \coloneqq \left(\int_a^b |f(x)|^p dx\right)^{\frac{1}{p}}$
- Facts:
- $\overline{-p} = \infty$: $(C[0,1], \|\cdot\|_{\infty})$ Banach - $p < \infty$: $(C[0,1], \|\cdot\|_p)$ not complete - $(L^p[0,1], \|\cdot\|_p) := (\dot{V}/V_0, \|\cdot\|_p)$ is a (dense) completion of $(C[0,1], \|\cdot\|_n)$ where
- $V := \left\{ f: [0,1] \to \mathbb{R} \mid f \text{ measurable}, \int_0^1 |f(x)|^p dx < \infty \right\}$ and

 $V_0 := \left\{ f \in V \mid \int_0^1 |f(x)|^p \, dx = 0 \right\} \text{ (in other words, } L^p[0,1]$ is like V, but where functions that agree almost everywhere are identified)

Linear Operators

- **Def**: $T: V \to W$ where V, W are vector spaces over F and T(x+y) = Tx + Ty [VA] and $T(\alpha x) = \alpha Tx$ [SM]
- E.g. Integration as lin. op.: $T: L^1([a,b]) \to L^1([a,b])$ where $(Tx)(t) \coloneqq \int_{a}^{t} x(\tau) d\tau$ is a lin. op.
- Subspaces: lin. op. $T: X \to Y$: T(X) is a subspace of Y; Ker(T) is a subspace of X
- **Inverse**: lin. op. $T: X \to Y$: - T is injective $\iff (Tx = 0 \implies x = 0)$ - if T^{-1} exists, then it is a lin. op. $T^{-1}: Y \to X$
- lin. op. $T: X \to Y$ is **bounded**: $\exists c > 0$ such that $\forall x \in X, ||Tx|| < c||x||$

• $||T|| = \sup_{\substack{x \in X \ x \neq 0}} \frac{||Tx||}{||x||} = \sup_{\substack{x \in X \ ||x|| = 1}} ||Tx||$ = $\sup_{\substack{x \in X \ ||x|| = c}} \frac{||Tx||}{c} = \sup_{\substack{x \in X \ ||x|| \leq c}} \frac{||Tx||}{c} = \sup_{\substack{x \in X \ ||x|| < c}} \frac{||Tx||}{c} \quad (\forall c > 0)$ • Continuous functions on compact space is Banach: If X a compact metric space then $(C(X, \mathbb{R}), \|\cdot\|_{\infty})$ is a • Equiv boundedness & continuity: lin. op. $T: X \to Y$: Banach space (where $C(X, \mathbb{R})$ is the set of continuous T is uniform cts. functions from X to \mathbb{R}) $\iff T \text{ is cts.}$ $\iff T \text{ is cts. at } \mathbf{0} \in V$ • X is an \mathbb{R} -Algebra: X is a \mathbb{R} -vector space and a ring, $\iff T$ is cts. at some $\mathbf{x} \in V$ where the ring addition is equivalent to the vector addition $\iff T$ is bounded • $Y \subseteq X$ is a **subalgebra**: vector subspace that is closed • Cor.: If lin. op. $T: X \to Y$ is bounded then: under ring multiplication (so Y is also an algebra) $-x_n \to x \implies T(x_n) \to T(x)$ - $\operatorname{Ker}(T)$ is closed (pre-image of closed set on cts. func.) • Statement: Let X be a compact metric space. • Finite: Any lin. op. $T: V \to W$ where V finite-dim is cts If $A \subseteq C(X, \mathbb{R})$ with: - $\mathbf{1} \in A$ (**1** is the unit of the ring $C(X, \mathbb{R})$) • Thm norm space: X, Y are normed spaces over the same - A is a subalgebra field: - A separates points of X- B(X,Y) is a subspace of L(X,Y), and it is a normed (i.e. $\forall x_1 \neq x_2 \in X, \exists f \in A \text{ such that } f(x_1) \neq f(x_2)$) space with norm ||T||Then A is dense in $C(X, \mathbb{R})$ (using $\|\cdot\|_{\infty}$) (B(X,Y): bounded lin. ops.; L(X,Y): set of lin. ops) (For \mathbb{C} (instead of \mathbb{R}), also require that $f \in A \implies \overline{f} \in A$) • Quotient sp. & projection: If U closed subspace of V: • Separability of bdd cts functions: $(C[0,1], \|\cdot\|_{\infty})$ is - V/U inherits norm and projection map is cts separable (can be proved with SW by letting A be the set - V Banach $\implies V/U$ Banach of all polynomials with \mathbb{R} coef., and then observing that the • Continuous decomposition into projection and set of all polynomials with \mathbb{Q} coef. is dense in A) isomorphism (tutorial): If $T: V \to W$ cts: $\overline{T}: V/\operatorname{Ker}(T) \to W$ (s.t. $T = \overline{T} \circ P, P$ projection map) injective, cts, $\|\overline{T}\| = \|T\|$ **Eigenvalues & Eigenvectors** • Lin. op. is Banach: If Y is Banach and X is a normed • **Def**: Given $T: V \to V$ and $v \in V \setminus \{0\}$ and $\lambda \in F$, then: space (not necessarily Banach), then B(X, Y) is Banach v is an **eigenvector** of T, and λ is an **eigenvalue** of T • (Continuous) dual space of $V: V^* := B(X, \mathbb{R})$ Algebraic dual space of V: $\operatorname{Hom}(X, \mathbb{R})$ (set of • **Finite**: If *T* is finite, then: structure-preserving maps from X to \mathbb{R}) λ is an eigenvalue $\iff T - \lambda$ is not injective \iff $T - \lambda$ is not invertible $\iff \det(T - \lambda) = 0$ • Thm dual: The dual space of a normed space is Banach • Invertibility: $T \in B(V, W)$ is invertible := $\exists S \in B(V, W)$ • **Point spectrum** of $T: \{\lambda \in \mathbb{C} \mid \lambda \text{ is an eigenvalue of } T\}$ such that $TS = \mathrm{Id}_W$ and $ST = \mathrm{Id}_V$ **Spectrum** of *T*: $\sigma(T) = \{\lambda \in \mathbb{C} \mid T - \lambda \text{ not invertible}\}$ point spectrum of $T \subseteq$ spectrum of T• Automorphism: **Resolvent set** of $T: \mathbb{C} \setminus \sigma(T) = \{\lambda \in \mathbb{C} \mid T - \lambda \text{ invertible}\}$ $\operatorname{Aut}(V) \coloneqq \{T \in B(V, V) \mid T \text{ is invertible}\}\$ (implies that $T^{-1} \in B(V, V)$ and hence is bounded too) • Invertibility thms: • $\operatorname{Aut}(V)$ is an open subset of B(V)- Lemma: If $T \in B(V) := B(V, V)$ and ||T|| < 1 then: I-T is invertible, with inverse $I+T+T^2+\cdots \in B(V)$ • Homeomorphism: continuous function that has a - Cor: If $T \in B(V)$ and $||T|| < |\lambda|$ then $T - \lambda$ is invertible continuous inverse function (i.e. $\sigma(T)$ is contained in the closed ball of radius $|\lambda|$ centred at origin) • Homomorphism: structure preserving map - Prop: Aut $(v) := \{T \in B(V) \mid T \text{ invertible}\}$ is open in B(V)- Lemma: If $S, T \in B(V)$ and ST = TS then: Basis $S \circ T$ invertible $\implies S$ and T both invertible, with $S^{-1} = TR = RT, T^{-1} = SR = RS$ where $R = (ST)^{-1}$ (note: converse only holds when V finite-dim)

- Uncountable (algebraic) basis: If $(V, \|\cdot\|)$ is infinite-dim Banach space, then $\dim V$ (i.e. cardinality of any basis) is uncountable (using the normal (finite/algebraic/Hamel) basis)
- V is separable: V has a countable dense subset
- S is a **topological spanning set**: (algebraic) span of S is dense in V
- $(\mathbf{e}_i)_{i \in \mathbb{N}} \in V$ is a Schauder basis: every $v \in V$ can be expressed as $v = \sum_{i=1}^{\infty} a_i \mathbf{e}_i$, and $\sum_{i=1}^{\infty} a_i \mathbf{e}_i = \sum_{i=1}^{\infty} b_i \mathbf{e}_i \implies \forall i \in \mathbb{N}, a_i = b_i$
- V has a Schauder basis \implies V has a countable topological spanning set $\implies V$ is separable

Stone-Weierstrass Theorem

• $\sigma(T)$ is a closed subset of $\{\lambda \in \mathbb{C} \mid |\lambda| \leq ||T||\}$ (the closed ball of radius ||T|| centred at origin)

• If $T \in \operatorname{Aut}(V)$, then $\forall \|S\| < \|T^{-1}\|^{-1}$, T - S is invertible with $\|(T - S)^{-1}\| \le \frac{\|T^{-1}\|}{1 - \|T^{-1}\| \cdot \|S\|}$

• Spectral radius: $r(T) = \inf_{n \in \mathbb{N}} ||T^n||^{\frac{1}{n}} \le ||T||$ - Prop: $r(T) = \lim_{n \to \infty} ||T^n||^{\frac{1}{n}}$ - Prop: $\sigma(T) \subseteq \{\lambda \in \mathbb{C} \mid |\lambda| \le r(T)\}$

• Spectral mapping thm: Given any $p(x) \in \mathbb{C}[x]$, then $p(\sigma(T)) = \sigma(p(T))$ (note: we are comparing sets here)

- $\sigma(T) \neq \emptyset$
- λ is an **approximate eigenvalue** of $T: \exists$ unit vectors $(v_n)_{n\in\mathbb{N}}\in V$ such that $(T-\lambda)(v_n)\to 0$ as $n\to\infty$ (0) λ is an eigenvalue $\implies \lambda$ is an approx. eigenvalue (1) λ is an approx. eigenvalue $\implies \lambda \in \sigma(T)$ (2) $\lambda \in \partial \sigma(T)$ (boundary of $\sigma(T)$) $\implies \lambda$ is an approx. eigenvalue
- Note: To find the point spectrum and spectrum of T, find all eigenvalues manually, and find r(T), and reason about the spectrum

Dual Spaces

- **Def**: Given normed space V (not necessarily Banach) over F: Dual space of V: $V^* := B(V, F)$
- V^* is Banach (even though V might not be Banach)
- Finite: If dim $V = n < \infty$ then: $V^* \cong \mathbb{R}^n \cong V$
- Example: Given $1 , then <math>\ell_p^* \cong \ell_q$ (isometrically isomorphic). Proof sketch:
- Let $T: \ell_q \to \ell_p^*$ where $T(\mathbf{y})(\mathbf{x}) = \sum_i x_i y_i$
- Check that T is well-defined (i.e. the infinite sum converges (from Hölder's))
- Check that $T(\mathbf{y}): \ell_n \to \mathbb{R}$ is linear
- Check that $T(\mathbf{y})$ is bounded (from Hölder's)
- So $T(\mathbf{y}) \in \ell_n^*$
- Check that T is injective (by showing that
- $T(\mathbf{v}) = 0 \implies \mathbf{v} = 0$, or show that T is an isometry)

- Check that T is surjective (take any $L \in \ell_n^*$, and let $y_i = L(\mathbf{e}_i)$, then show $\mathbf{y} = (y_i) \in \ell_q$ and $T(\mathbf{y}) = L$

(3) T is injective : Ubscure that [T(y)(ei) = yi Ky So if T(y) = 0, then yi = 0 tr, ic y=0 (4) T is surjective : this is the main work Given Le Lo need to find y e la st Tly) = L Motivated by (*) above, let us set yi = L(ei) (ei = ith standard basis elevent, Claim: $y = (y_i) \in lq$ & T(y) = L. Find solve or Pf of Qaim: For each n, set L(3)= Z 14:12 $X_{lk}^{(n)} = \begin{cases} |y_{lk}|^{q-1} sign(y_{lk}) & \text{if } k \leq n \end{cases}$ $X_{lk}^{(n)} = \begin{cases} |y_{lk}|^{q-1} sign(y_{lk}) & \text{if } k \leq n \end{cases}$ $O \quad \text{otherwise}$ Then $\chi^{(n)} \in J_p$ & $|\underline{x}^{(n)}||_{p} = \left(\sum_{k=1}^{n} |y_{k}|^{p \cdot (q-1)}\right)^{k}$ $= \left(\begin{array}{c} 1 \\ \sum |y_{\mu}|^{q} \end{array} \right)^{\frac{1}{p}} \left(\begin{array}{c} sinc \\ p \neq q = pq \end{array} \right)$ Moreover, $L(\underline{x}^{(n)}) = \sum_{k=1}^{n} |y_k|^{q}$ $S_{k=1} \sum_{k=1}^{n} |y_{k}|^{\gamma} = L(\underline{x}^{n}) \leq \|L\| \cdot \|\underline{x}^{m}\|_{p}$ $(\sum_{k=1}^{n} |y_k|^{2})^{\frac{1}{2}} \leq \|L\|.$ $= \| y \|_{q} \leq \| L \|, i \in y \in l_{q}.$ $Moreow, L(x) = \lim_{n \to \infty} L(\frac{1}{2} x_{i} e_{i}) = \sum_{i=1}^{\infty} x_{i} L(e_{i}) = T(y)(x).$

- (Note: to prove otherwise, use HB to find L such that $L|_{\ell_n^*} = 0$ but $L \neq 0$. Then $0 = L|_{\ell_n^*} = T(\mathbf{y})$, so $\mathbf{y} = 0$ (by injectivity), so L = 0 (contradiction)) - Check that T is an isometry (i.e. $||T(\mathbf{y})|| = ||\mathbf{y}||_a \ \forall y \in \ell_a$

- *p* is **subadditive** if it satisfies: $- p(v_1 + v_2) \le p(v_1) + p(v_2)$ $- p(\lambda v) = \lambda p(v) \ \forall \lambda > 0$
- p is convex if $\forall 0 \le t \le 1, \forall v_1, v_2 \in V$: $p(tv_1 + (1-t)v_2) \le tp(v_1) + (1-t)p(v_2)$
- subadditive \implies convex
- Hahn-Banach thm: Given normed space V (over \mathbb{R} or \mathbb{C}) and subspace $W \subseteq V$, for any $F \in W^*$, there exists $\tilde{f} \in V^*$ such that $\tilde{f}\Big|_{W} = f$ and $\left\|\tilde{f}\right\| = \|f\|$.
- Corollaries of Hahn-Banach: $-v = 0 \iff f(v) = 0 \ \forall f \in V^*$ $\forall v \in V, \exists f_v \in V^* \text{ such that } ||f_v|| = 1 \text{ and } f_v(v) = ||v||$ (such an f_v is called a **support functional** of v) - For $T \in B(V, W)$, the adjoint $T^* \in B(W^*, V^*)$ defined by $T^*(f) \coloneqq f \circ T$ satisfies: $||T^*|| = ||T||$
- **Double dual**: There is a natural map $i: V \to V^{**} := (V^*)^*$ defined by i(v)(f) := f(v). It satisfies: $- ||i(v)|| \le ||v||$ - i is linear - *i* is an isometry (and hence continuous and injective)
- V is **reflexive**: *i* (defined above) is an isomorphism
- reflexive \implies Banach (since V^{**} is Banach)

Baire Category Theorem

- $A \subseteq X$ is nowhere dense in X: $Int(\overline{A}) = \emptyset$ (interior of \overline{A}) $\iff \overline{A}$ contains no non-empty open set \iff For any non-empty open set $U \subseteq X$, $A \cap U$ is not dense in U $\iff X \setminus \overline{A}$ is dense in X
- $A \subseteq X$ is **meagre** in X: A is a countable union of nowhere dense subsets of X
- X is of **first category**: X is meagre in X
- X is of second category: X is not meagre in X \iff If $(U_i)_{i\in\mathbb{N}}$ is a countable collection of open dense subsets of X then $\bigcap_i U_{i=1}^\infty \neq \emptyset$ \iff If $X = \bigcup_{n=1}^{\infty} X_n$ with X_n all closed, then $\exists n \in \mathbb{N}$ such that $\operatorname{Int}(X_n) \neq \emptyset$
- Baire category theorem: X is a complete metric space \implies X is of second category
- Cor: X complete and $A \subseteq X$ is of first category $\implies X \setminus A$ is dense in X
- Applications:
- $\mathbb{R} \setminus \mathbb{Q}$ is dense
- Any infinite-dim Banach space has uncountable dimension
- There exists $f \in C[0, 1]$ such that f nowhere differentiable (actually, the set of such f is dense in $(C[0,1], \|\cdot\|_{\infty})$) - Given X is a complete metric space, $F \subseteq C(X, \mathbb{R})$ (set of cts functions) such that F is pointwise bounded (i.e. $\forall x \in X, \sup_{f \in F} |f(x)| < \infty$), then: there exists a non-empty open set $U \subseteq X$ such that $\sup_{f \in F, x \in U} |f(x)| < \infty$

Principle of Uniform Boundedness

- **Def**: Given V Banach and W normed and $F \subseteq B(V, W)$: $\forall v \in V, \sup_{T \in F} ||T(v)|| < \infty \implies \sup_{T \in F} ||T|| < \infty$
- Banach-Steinhaus thm: Given V Banach and W normed and $(T_n)_{n \in \mathbb{N}}$ a sequence in B(V, W): $\forall v \in V, (T_n(v))_{n \in \mathbb{N}} \to T(v) \in W \implies T \in B(V, W)$
- $T: V \to W$ is open: \forall open $U \subseteq V, T(U)$ open in W
- Open mapping theorem: Given V, W Banach and $T \in B(V, W)$: T surjective $\implies T$ open
- Inverse mapping theorem: Given V, W Banach and $T \in B(V, W)$ bijective: $T^{-1} \in B(W, V)$
- Closed graph theorem: Given V, W Banach and $T: V \to W$ linear map: T bounded \iff graph of T is closed (w.r.t. $||(v, w)|| \coloneqq \max\{||v||_V, ||w||_W\}$
- Graph of T: $\Gamma_T := \{(v, T(v)) \mid v \in V\} \subset V \times W$ (when T linear, Γ_T is a vector subspace of $V \times W$)
- Note: Banach-Steinhaus, open mapping, inverse mapping, closed graph have non-linear versions too

Fourier Analysis

- $A := \{ \text{finite lin. combin. of } e^{inx} \mid n \in \mathbb{Z} \} \subseteq C(\mathbb{R}/2\pi\mathbb{Z})$ $= \{ P(e^{ix}) \mid P \in \mathbb{C}[t] \}$ ($C(\mathbb{R}/2\pi\mathbb{Z})$): cts complex-val fn)
- Lemma: A is dense in $C(\mathbb{R}/2\pi\mathbb{Z})$ w.r.t. $\|\cdot\|_{\infty}$ (and hence $C(\mathbb{R}/2\pi\mathbb{Z})$ separable)
- Fourier coefficients: $\hat{f}(n) \coloneqq \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-inx} dx$

•
$$S_N(f)(x) \coloneqq \sum_{n=-N}^N \hat{f}(n) e^{inx}$$

- There are some $f \in C(R/2\pi\mathbb{Z})$ such that $S_N(f) \not\rightarrow f$ unif. (so $\{e^{inx} \mid n \in \mathbb{Z}\}$ is not a Schauder basis of $C(\mathbb{R}/2\pi\mathbb{Z})$)
- Dirichlet's kernel: $D_N(s) \coloneqq \sum_{n=-N}^N e^{ins}$ Hence $S_N(f)(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) D_N(x-t) dt$ Explicit form: $D_N(s) = \frac{\sin\left(N+\frac{1}{2}\right)s}{\sin\frac{s}{2}}$
- $\frac{1}{2\pi} \int_{-\infty}^{\pi} |D_N(s)| \, ds > C \log N$ for some C > 0

•
$$\sigma_N(f) \coloneqq \frac{1}{N+1} \sum_{n=0}^N S_n(f)$$

• Fejér's kernel: $K_N(s) = \frac{1}{N+1} \sum_{n=0}^N D_n(s)$ Hence $\sigma_N(f)(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(s) K_N(x-s) ds$ Explicit form: $K_N(s) = \frac{1}{N+1} \left(\frac{\sin \frac{N+1}{2}s}{\sin \frac{s}{2}} \right)^2$

Properties: - $K_N(s) \geq 0$ $-\frac{1}{2\pi}\int_{-\pi}^{\pi}K_N(s)\,ds=1$ - For any $0 < \delta \ll \pi$, $K_N(s) \xrightarrow{N \to \infty} 0$ unif. for $\delta \le |s| \le \pi$ (Note: the last two properties imply that $K_N(s)$ behaves

like the Dirac delta function, souished toward 0)

• Thm: $\sigma_N(f) \xrightarrow{N \to \infty} f$ unif. (so $\{e^{inx} \mid n \in \mathbb{Z}\}\$ is a topological spanning set of $C(\mathbb{R}/2\pi\mathbb{Z})$) • Hilbert space: complete inner product space

• Uniqueness of Fourier series: Given $f_1, f_2 \in C(\mathbb{R}/2\pi\mathbb{Z})$: $f_1 = f_2 \iff \forall n \in \mathbb{Z}, \ \hat{f}_1(n) = \hat{f}_2(n)$

• $\sum_{n=-\infty}^{\infty} \left| \hat{f}(n) \right| < \infty \implies (S_N(f))_{N \in \mathbb{N}}$ is Cauchy in $C(\mathbb{R}/2\pi\mathbb{Z})$ w.r.t $\|\cdot\|_{\infty}$, and hence $S_N(f) \to f$ unif.

• Lemma: $f \in C^k(\mathbb{R}/2\pi\mathbb{Z}) \implies |\hat{f}(n)| \leq \frac{C}{n^k}$ (k cts diffable) (hence $f \in C^2(\mathbb{R}/2\pi\mathbb{Z}) \implies S_N(f) \to f$ unif.)

• The completion of $C(\mathbb{R}/2\pi\mathbb{Z})$ is $L^p(\mathbb{R}/2\pi\mathbb{Z}) = L^p[-\pi,\pi]$ so $\hat{f}(n)$ is well-defined for $f \in L^p$.

• $p > q \implies L^p(\mathbb{R}/2\pi\mathbb{Z}) \subset L^q(\mathbb{R}/2\pi\mathbb{Z})$

• Riemann-Lebesgue lemma: Given $\mathcal{F}: L^1(\mathbb{R}/2\pi\mathbb{Z}) \to \ell_\infty \subseteq \mathbb{C}^{\mathbb{Z}}: f \mapsto \left(\hat{f}(n)\right)_{\pi^{-\pi}}$, then $\operatorname{Image}(\mathcal{F}) \subset C_0$

• Properties about \mathcal{F} : - \mathcal{F} is injective - \mathcal{F} is not surjective

• Further results in Fourier analysis:

- $f \in C^1(\mathbb{R}/2\pi\mathbb{Z}) \implies S_N(f) \to f$ unif. $\exists f \in L^1(\mathbb{R}/2\pi\mathbb{Z}) \text{ s.t. } (S_N(f)(x))_{N \in \mathbb{N}} \text{ diverges } \forall x \in [-\pi, \pi]$ $\exists f \in L^1(\mathbb{R}/2\pi\mathbb{Z}) \text{ s.t. } \|S_N(f) - f\|_1 \not\to 0 \text{ as } N \to \infty$ - If p > 1 then $S_N(f) \xrightarrow{ptwise} f$ almost everywhere $f \in L^p$, furthermore $S_N(f) \to f$ w.r.t. $\|\cdot\|_p$

Inner Product Spaces

• **Def**: An **inner product** is a map $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$ or \mathbb{C} satisfying:

 $-\langle v_1 + v_2, w \rangle = \langle v_1, w \rangle + \langle v_2, w \rangle$

- $\langle \lambda v, w \rangle = \lambda \langle v, w \rangle$

 $\langle v, \lambda w \rangle = \overline{\lambda} \langle v, w \rangle$

 $\overline{\langle v, w \rangle} = \langle w, v \rangle$

 $\langle v, v \rangle \geq 0$

(it can be inferred that $\langle v, w_1 + w_2 \rangle = \langle v, w_1 \rangle + \langle v, w_2 \rangle$)

Then $(V, \langle \cdot, \cdot \rangle)$ is an inner product space

• An inner product gives rise to a norm $||v|| := \langle v, v \rangle^{\frac{1}{2}}$

• Cauchy-Schwarz inequality: $|\langle v, w \rangle| < ||v|| \cdot ||w||$

(or equivalently, $|\langle v, w \rangle|^2 = \langle v, v \rangle \cdot \langle w, w \rangle$) (or for std. inner prod.: $\left|\sum_{i=1}^{n} v_i \overline{w_i}\right|^2 \leq \sum_{j=1}^{n} \left|v_j\right|^2 \sum_{k=1}^{n} \left|w_k\right|^2$) with equality iff v and w are lin. dependent (i.e. one of them is zero or one is a scalar multiple of the other)

• Parallelogram law:

A norm $\|\cdot\|$ arises from an inner product \iff $\forall v, w \in V, 2 \|v\|^2 + 2 \|w\|^2 = \|v + w\|^2 + \|v - w\|^2$

• Polarisation formula: If V is an inner product space... - ... over \mathbb{R} : $\langle x, y \rangle = \frac{1}{4} \left(\|x + y\|^2 - \|x - y\|^2 \right)$ $= \frac{1}{2} \left(\|x+y\|^2 - \|x\|^2 - \|y\|^2 \right)$ - ... over \mathbb{C} : $\langle x, y \rangle = \frac{1}{4} \sum_{\varepsilon = \pm 1 \pm i} \varepsilon \|x + \varepsilon y\|^2$

• Cor:

If $(V, \langle \cdot, \cdot \rangle)$ is an inner product space with arised norm $\|\cdot\|$, and $(\hat{V}, \|\cdot\|)$ is the completion of $(V, \|\cdot\|)$, then $\langle \cdot, \cdot \rangle$ extends to an inner product on V

Orthogonality: x, y are orthogonal := ⟨x, y⟩ = 0 orthogonal complement of X ⊆ V: X[⊥] := {v ∈ V | ⟨x, v⟩ = 0 ∀x ∈ X} Properties of X[⊥]: - X ⊆ Y ⊆ V ⇒ X[⊥] ⊇ Y[⊥] - X[⊥] = Span X[⊥] - X[⊥] is a closed subspace of V - X ⊆ X^{⊥⊥} - X[⊥] = X^{⊥⊥⊥} - X ∩ X[⊥] = {0}
Projection to U ⊆ V: linear map P : V → V such that P² = P and Image(P) = U

(note: implies that $u \in U \implies P(u) = u$) A projection P of V onto U is equivalent to a subspace $W \subseteq V$ s.t. $U \oplus W = V$. Then W = Ker(P) and $P: U \oplus W \to U: u + w \mapsto u$.

- **Prop**: If $0 \neq U$ complete subspace of V, then $V = U \oplus U^{\perp}$
- Unique closest point lemma: Given $x \in V$ (inner product space) and a complete subspace $U \subseteq V$, there is a <u>unique</u> $u_0 \in U$ s.t. $d(x, U) \coloneqq \inf_{u \in U} ||x u|| = ||x u_0||$
- Orthogonal projection: Given an inner product space Vand a complete subspace $U \subseteq V$, there exists a cts projection $P: V \to V$ s.t. Image(P) = U and $\operatorname{Ker}(P) = U^{\perp}$ (furthermore ||P|| = 1 and P(x) is the unique point in Uclosest to x) Such P is the orthogonal projection of V onto U

• Dual spaces of Hilbert space: $\forall v \in V$, let $l_v : V \to \mathbb{C} : u \mapsto \langle u, v \rangle$ (so $l_V \in V^*$) Let $j : V \to V^* : v \to l_v$ Then j is conjugate linear and isometric (conjugate linear: $j(v_1 + v_2) = j(v_1) + j(v_2)$ and $j(\lambda v) = \overline{\lambda} j(v)$) (isometric: $\|j(v)\| = \|v\|$)

- Riesz representation thm: *j* (above) is surjective, and hence *j* is a conjugate linear isometric isomorphism (note: it is not actually an isomorphism because of conjugation)
- Reflexivity of Hilbert space: V reflexive and V* Hilbert (with inner product $\langle j(v_1), j(v_2) \rangle_{V^*} = \langle v_2, v_1 \rangle_V = \overline{\langle v_1, v_2 \rangle_V}$)

Orthonormal Basis

- Orthogonal system: {e_α} of nonzero elements in (V, ⟨·, ·⟩)
 s.t. ⟨e_α, e_β⟩ = 0 ∀α ≠ β
- Orthonormal system: orthogonal system with $||e_{\alpha}|| = 1 \ \forall \alpha$
- Given an orthogonal system S: S is maximal $\iff \overline{\text{Span}(S)} = V$
- Orthonormal basis: maximal orthonormal system
- Thm: If V separable Hilbert space then V has a countable orthonormal basis
- Bessel's inequality: If V separable Hilbert space and $\{e_n\}_{n\in\mathbb{N}}$ orthonormal basis then $\forall N \in \mathbb{N}, \forall x \in V, \sum_{i=1}^{N} |\langle x, e_i \rangle|^2 \leq ||x||^2$
- Prop: If V separable and {e_n}_{n∈ℕ} orthonormal basis then:
 ∀x ∈ V, x = ∑_{i=1}[∞] ⟨x, e_i⟩e_i
- $\forall x, y \in V, \langle x, y \rangle = \sum_{i=1}^{\infty} \langle x, e_i \rangle \langle e_i, y \rangle$
- $\forall x \in V, ||x||^2 = \langle x, x \rangle = \sum_{i=1}^{\infty} |\langle x, e_i \rangle|^2$ (Parseval's identity)

- **Rmk**: Orthogonal basis \implies Schauder basis
- Riesz-Fischer thm: Given V separable Hilbert space and {e_n}_{n∈ℕ} orthonormal basis, then: the linear map V → l₂ : x ↦ (⟨x, e_n⟩)_{n∈ℕ} is a Hilbert space isomorphism (i.e. preserves ⟨·.·⟩, and hence must be isometric) (hence all sep. Hilbert spaces of infinite dim are isomorphic)
- Fourier analysis results: - $\{e^{inx}\}_{n\in\mathbb{Z}}$ is an orthonormal basis for $L^2(\mathbb{R}/2\pi\mathbb{Z})$ where $\langle f,g \rangle \coloneqq \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)\overline{g(x)} dx$ - $\forall f \in L^2, S_N(f) \to f \text{ w.r.t. } \|\cdot\|_2$ - $\forall f \in L^2, \|f\|^2 = \sum_{k=-\infty}^{\infty} \left|\hat{f}(k)\right|^2$ (Parseval's identity) - The map $\mathcal{F} : L^2(\mathbb{R}/2\pi\mathbb{Z}) \to \ell_2 : f \mapsto (\hat{f}(n))_{n\in\mathbb{Z}}$ is an isometric isomorphism of Hilbert spaces - If $f \in C^1(\mathbb{R}/2\pi\mathbb{Z})$ (continuously differentiable functions)

then $S_N(f) \to f$ w.r.t. $\|\cdot\|_{\infty}$

Spectral Theory of Compact Self-Adjoint Operators

- **Isometry**: $T: V \to W$ bounded linear map s.t. $\forall v_1, v_2 \in V, \langle T(v_1), T(v_2) \rangle_W = \langle v_1, v_2 \rangle_V$
- Unitary: T: V → W bounded linear map that is isometric and surjective
 (for finite-dim: T: V → V unitary ⇔ A^tA = I)
- Bound of $T: ||T|| = \sup_{\substack{||x||=1 \\ ||y||=1}} |\langle T(x), y \rangle|$
- Given $T: V \to W$ a bounded linear map, we have $T^*: W^* \to V^*$ (adjoint map); but due to Riesz representation thm, $V \cong V^*$ and $W \cong W^*$ (up to conjugation only) so we can redefine T^* as $T^*: W \to V$ which is now linear in \mathbb{C} (because the conjugation cancel out)
- $T^*: W \to V$ is characterised by $\langle T(v), w \rangle_W = \langle v, T^*(w) \rangle_V$ (or equivalently $\langle w, T(v) \rangle_W = \langle T^*(w), v \rangle_V$)
- $T^{**} = T : V \to W$ (reminder: T is an inner product space)
- T: V → V is self-adjoint: T = T*: V → V <u>Propositions</u> when T = T*:
 <u>σ(T) ⊆ ℝ</u> (in particular, any eigenvalue of T is real)
 <u>Eigenspaces</u> of T for distinct eigenvalues are orthogonal
- Thm: If $T = T^*$ then $||T|| = \sup_{||x||=1} |\langle T(x), x \rangle|$
- Formula: If $T = T^*$ then: $\langle T(x+y), x+y \rangle - \langle T(x-y), x-y \rangle = 4 \operatorname{Re} \langle T(x), y \rangle$
- Attainment of approximate eigenvalues: If $T = T^*$ then either ||T|| or -||T|| (or both) are approx. eigenvalues (hence r(T) = ||T||)
- Compact operators: Given V Banach, $T: V \to V$ is compact := T(B(1)) is relatively compact (i.e. $\overline{T(B(1))}$ is compact) (note: B(1) is the closed ball of radius 1) (equiv. sequential compactness cond.: given any bounded sequence $(x_n) \in V$, $(T(x_n))$ has a convergent subsequence) <u>Propositions:</u>
- T has finite rank (i.e. dim Image $(T) < \infty$) $\implies T$ compact - The subset of compact operators in B(V) is closed in B(V)- If V is Hilbert, then:
- { compact operators } = closure of { finite-rank operators }

• Compactness and dual spaces:

- T compact $\iff T^*$ compact
- T^*T compact $\implies T$ compact

Spectral Theorem

Assume T is self-adjoint and compact in this whole section.

- **Eigenspace** of eigenvalue λ : $N_{\lambda} := \text{Ker}(T \lambda I)$
- $\lambda \neq 0$ is an eigenvalue of $T \implies N_{\lambda}$ is finite-dim
- $\lambda \neq 0$ is an approx. eigenvalue of $T \implies \lambda$ is an eigenvalue of T
- (so ||T|| or -||T|| (or both) must be eigenvalues of T)

• Distribution of eigenvalues:

- $\{\lambda \mid \lambda \text{ is an eigenvalue of } T\}$ is countable - $\forall \varepsilon > 0, \{\lambda \mid |\lambda| > \varepsilon \text{ and } \lambda \text{ is an eigenvalue of } T\}$ is finite (i.e. the only possible cluster point could be at $\lambda = 0$)
- **Prop:** $V = \overline{\text{Span} \{N_{\lambda} \mid \lambda \in \sigma_{p}(T)\}}$ (i.e. span of eigenspaces is dense) (note: $\sigma_{p}(T) \coloneqq$ point spectrum of T)
- Spectral thm: Given T compact self-adjoint operator on a Hilbert space V, then: there exists an orthonormal basis {e_n} of V and a sequence of (not necessarily distinct) real numbers {a_n} such that:
 T(e_n) = a_ne_n
 ∀ε > 0, |{a_n | |a_n| > ε}| < ∞
- Cor: Given T compact self-adjoint operator on a Hilbert space V, then: $\sigma(T) = \overline{\sigma_{p}(T)} = \sigma_{p}(T)$ or $\sigma_{p}(T) \cup \{0\}$ (in particular, $\sigma(T) = \sigma_{p}(T)$ when dim $V < \infty$ and $\sigma(T) = \sigma_{p}(T) \cup \{0\}$ when dim $V = \infty$)